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Abstract

Edge computing has emerged as a paradigm that brings computation closer to
data sources, reducing latency and alleviating core network congestion. However,
as workloads become increasingly dynamic and heterogeneous, efficient resource
allocation in edge environments requires anticipating demand surges while avoid-
ing over-provisioning. Traditional reactive or threshold-based strategies often
respond only after saturation occurs, leading to Service Level Agreement (SLA)
violations, inefficient task allocation, and degraded Quality of Service (QoS). To
address these challenges, we propose an agent-based Al architecture for proactive
resource allocation, integrating PRIMAL, a pre-trained Long Short-Term Mem-
ory (LSTM) forecasting model, to predict CPU and memory usage in edge nodes.
This predictive capability enables the system to anticipate saturation events and
trigger reallocation decisions before they occur, improving system stability under
bursty and high-contention conditions. The architecture is designed as a modular,
multi-agent framework, supporting seamless integration of alternative forecast-
ing mechanisms, reinforcement learning policies, and multi-objective optimization
strategies. Experimental results show that PRIMAL achieves up to 12% higher
task acceptance rates and significantly reduces sustained SLA violations, while
maintaining competitive throughput and avoiding unnecessary task rejections.
These findings indicate that agentic Al-driven forecasting can deliver tangible
benefits for future autonomous edge infrastructures.

Keywords: Edge Computing, Resource Allocation, Agentic AI, LSTM Forecasting,
Proactive Orchestration, Quality of Service (QoS).



1 Introduction

The rapid proliferation of latency-sensitive applications in domains such as
autonomous driving, industrial automation, immersive virtual reality, and real-time
video analytics has placed unprecedented demands on edge computing infrastructures
[1]. Unlike traditional cloud deployments, which operate in centralized, homogeneous,
and resource-rich environments, edge infrastructures are inherently more distributed
and diverse. They encompass a wide spectrum of devices, from low-power embedded
systems and IoT gateways to high-performance microservers, deployed in close prox-
imity to data sources and end users. This diversity means that while certain edge
nodes may have substantial computational capacity, others may operate under tighter
constraints in processing power, memory, or network bandwidth. The heterogeneous
and geographically dispersed nature of these systems introduces unique challenges in
coordinating resource allocation, maintaining consistent performance, and avoiding
overload under highly variable workload conditions [2].

Conventional resource allocation strategies in edge environments are predom-
inantly reactive, responding to changes in system load only after performance
degradation becomes evident [3]. While such approaches are straightforward to imple-
ment, they inherently suffer from latency in decision-making, allowing transient
overloads to propagate before corrective measures can be applied. Proactive meth-
ods, on the other hand, attempt to anticipate future load conditions, often leveraging
statistical forecasting or moving averages, to act before saturation occurs. However,
these methods are typically constrained by simplistic predictive models that strug-
gle to capture the complex temporal dependencies and nonlinear behaviors inherent
in multi-tenant, multi-application edge workloads. This limitation is particularly pro-
nounced when workload patterns deviate from historical trends, such as during abrupt
shifts in demand caused by unexpected user behavior or external events [4].

Recent advances in Agentic Artificial Intelligence (Agentic AI), autonomous, goal-
driven agents capable of perception, reasoning, and adaptive decision-making, offer
a promising paradigm shift for edge resource allocation [5]. By embedding predictive
intelligence directly into each edge node, these agents can monitor local performance
metrics, infer future saturation risks, and proactively adjust resource allocation strate-
gies without centralized coordination. Unlike static forecasting approaches, Agentic
AT architectures can integrate heterogeneous sources of telemetry, continuously refine
their models in operation, and adapt decision thresholds in response to evolving work-
load characteristics. This enables not only faster reaction times but also a reduction
in unnecessary task rejections, leading to improved resource utilization and higher
throughput [6].

In this work, we propose PRIMAL (Proactive Resource Intelligent Management
with Agentic Learning), an agent-based AI architecture for proactive resource allo-
cation in edge environments. PRIMAL integrates a pre-trained Long Short-Term
Memory (LSTM) forecasting model [7] to capture long-term temporal correlations
in CPU and memory usage patterns, enabling accurate short-term load forecasting
and intelligent pre-allocation of resources. We evaluate both online-trained and pre-
trained LSTM agents within the same Agentic Al framework, performing a systematic
comparison against traditional reactive and statistical predictive baselines. Through



extensive simulations with realistic workload traces, our results show that PRIMAL
can achieve up to 12% higher task acceptance rates and significantly reduce sustained
SLA violations, while maintaining competitive throughput and avoiding unnecessary
rejections, even under bursty and high-contention conditions.

The main contributions of this work are threefold. First, we introduce an Agentic Al
architecture tailored for resource allocation in edge computing, combining autonomous
decision-making with predictive intelligence. Second, we design and implement mul-
tiple allocation strategies, including reactive, statistical predictive, adaptive hybrid,
and LSTM-based agents, enabling a systematic performance comparison. Third, we
conduct an in-depth evaluation using heterogeneous workload traces and multiple per-
formance metrics, providing insights into the trade-offs between proactivity, accuracy,
and stability in edge resource management. Our findings highlight the potential of
Agentic Al to transform resource allocation from a reactive safeguard into a proac-
tive optimization mechanism, paving the way for more resilient and intelligent edge
infrastructures.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background on edge computing architectures and the role of Agentic Al in resource
management. Section 3 formalizes the resource allocation problem, outlining the con-
straints, performance metrics, and stochastic nature of the workload. Section 4 details
PRIMAL, our proposed Agentic Al framework that integrates predictive modeling
and adaptive decision-making for proactive allocation in edge environments. Section
5 describes the experimental methodology, including trace generation, baseline algo-
rithms, and evaluation metrics, and presents a thorough discussion of the obtained
results. Section 6 reviews related literature, highlighting the differences and advan-
tages of our approach compared to existing solutions. Finally, Section 7 summarizes
the key findings and outlines directions for future research.

2 Background

The evolution of edge computing has shifted the locus of computation from centralized
data centers toward geographically distributed nodes situated closer to data sources
and end users. This architectural shift enables significant reductions in latency, net-
work congestion, and bandwidth costs, while also facilitating compliance with data
locality and privacy requirements [8]. However, the benefits of edge computing are
coupled with increased complexity in resource allocation, given the heterogeneity of
hardware capabilities, the variability of workloads, and the need to maintain Quality
of Service (QoS) under dynamic conditions.

In edge computing, resource allocation encompasses the dynamic distribution of
CPU, memory, and network resources among competing applications and services
[9]. Unlike the cloud, where oversubscription is mitigated by virtually limitless scal-
ing, edge nodes often operate under finite capacity constraints. Even when powerful
microservers are deployed, their resources must be shared among multiple tenants and
workloads with differing latency sensitivities and Service Level Objectives (SLOs). The
unpredictability of demand, ranging from steady telemetry streams to sudden bursts



in event-driven processing, necessitates allocation strategies that are both responsive
and predictive.

Traditional allocation methods in the edge can be broadly classified into reactive
and proactive approaches [10]. Reactive methods operate by detecting performance
degradation, such as CPU overload or memory saturation, and adjusting resource
allocations only after Service Level Objective (SLO) violations occur. In contrast,
proactive methods rely on forecasting techniques, including statistical models, moving
averages, or time-series extrapolation, to anticipate future load conditions and adjust
allocations in advance, thereby aiming to prevent violations before they materialize.

While proactive methods offer advantages in preventing overload, their accuracy
heavily depends on the quality of the prediction model and its adaptability to non-
stationary workloads [11]. This is where Agentic Al introduces a disruptive potential.
Agentic Al refers to autonomous, goal-directed Al agents that perceive their environ-
ment, reason about possible actions, and adaptively adjust their behavior to achieve
predefined objectives. In the context of edge computing, these agents can be embed-
ded directly into each node, granting them the ability to continuously monitor local
telemetry, including CPU usage, memory utilization, and network throughput, predict
future system states based on historical trends and learned patterns, select allocation
policies that minimize SLO violations while maximizing throughput and acceptance
rate, and dynamically adapt decision thresholds to workload variations [12].
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Fig. 1: Conceptual integration of Agentic Al within an edge computing architecture.

Figure 1 illustrates the conceptual integration of Agentic Al within an edge com-
puting architecture. At the lowest layer, a heterogeneous set of edge nodes, ranging
from lightweight IoT gateways to microservers, interacts with end devices and local
sensors, generating continuous streams of telemetry data, including CPU utilization,
memory consumption, and network throughput. This raw telemetry is ingested by the



Perception Module, which preprocesses and normalizes measurements to remove noise
and align temporal sampling. The processed data is fed into the Reasoning Module,
where predictive models such as Long Short-Term Memory (LSTM) networks analyze
historical trends to forecast short-term system load. These predictions incorporate
temporal correlations, workload burstiness, and diurnal patterns to estimate resource
saturation risk. Based on these forecasts, the Decision Module selects appropriate
allocation actions, such as migrating tasks to other nodes, adjusting CPU and mem-
ory quotas, or throttling workloads to preserve SLOs. Therefore, the agent operates
autonomously and in real time, adapting decision thresholds to workload variations
and node capacity changes without centralized orchestration. At the top layer, a coor-
dination framework enables inter-agent communication, allowing multiple edge nodes
to share state summaries or predictive alerts. This distributed intelligence supports
proactive, cooperative decision-making, enhancing scalability and resilience compared
to purely reactive systems.

This architecture contrasts sharply with static rule-based systems. Whereas reac-
tive approaches respond only to threshold breaches, an Agentic Al agent can reason
about when to act and how much to adjust resources, even in the absence of immedi-
ate overload symptoms [13]. Among the various predictive models applicable in this
context, the Long Short-Term Memory (LSTM) network stands out as a recurrent
neural network architecture specifically designed to capture long-term dependen-
cies in sequential data [14]. In edge resource allocation, LSTMs can learn temporal
correlations in workload traces, such as diurnal usage patterns, periodic spikes, or
bursty traffic behaviors, and, by leveraging gated memory cells, mitigate the vanishing
gradient problem that hampers traditional RNNs [15].

Two deployment modes are relevant to this work. The first corresponds to online-
trained LSTM agents, which continuously update their model parameters during
operation, enabling adaptation to novel workloads at the cost of slower initial per-
formance. The second mode involves PRIMAL, our pre-trained LSTM-based agent,
trained offline on large-scale workload datasets and capable of delivering accurate pre-
dictions immediately upon deployment. While PRIMAL may require fine-tuning for
optimal long-term performance, its integration into an Agentic Al framework trans-
forms resource allocation from a reactive safeguard into a proactive optimization
process. Instead of merely preventing overload, PRIMAL actively shapes workload
acceptance and scheduling to maintain SLO compliance and improve resource effi-
ciency—a behavior reflected in our experimental results, which show measurable gains
in acceptance rate and reduction of sustained SLA violations.

3 Problem Definition

We consider an edge computing environment composed of a set of N heterogeneous
nodes, denoted by £ = {ey, eq,...,en}. Each node e; is characterized by its available
compuational capacity, memory, and network bandwidth, represented respectively as
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which define hard upper bounds on the resources that can be allocated to any set
of tasks hosted by that node.

A continuous stream of tasks T = {7, 72, ..., Ty} arrives over time. Each task T
is described by its computational demand d]CPU7 its memory demand d;VIEM, a deadline
D; after which it is considered failed, and an associated priority level p; € {1,..., P},
where smaller values indicate higher priority. The priority reflects the criticality of the
task in meeting application-specific Service Level Objectives (SLOs).

At each discrete time step t, the allocation policy must decide whether to accept
each task and, if so, assign it to a specific node according to the binary variable

) 1, if task 7; is allocated to node e; at time ¢,
€Xii =
* 0, otherwise,

where the decision matrix X (¢) = [z;;(t)] must satisfy

N
i=1

ensuring that each task is assigned to at most one node, while still allowing rejec-
tions when no node has enough capacity available. Given the finite resources of each
node, allocations must also satisfy the per-resource constraints

Z d;JPU < CCPY, Z d?/IEM < OMEM_
;€A (L) T; €A (t)
where A;(t) denotes the set of tasks allocated to node e; at time ¢.
The performance of an allocation policy is evaluated through several comple-
mentary metrics. Throughput measures the number of tasks completed within their
deadlines,

M
Throughput = Z I (completion_time(7;) < D),
j=1
where I(-) is the indicator function, and higher values indicate more effective
resource utilization. The rejection rate quantifies the proportion of tasks refused at
arrival due to lack of resources,

ZjM:1 I(7; rejected)
M )
where lower values indicate that more incoming demand is being served. Another
key measure is the number of SLO violations, defined as

RejectionRate =

M
Violations = Z]I (L; > SLO;),
j=1
where L; is the observed latency (completion time) of task 7; and SLOj is its
latency objective. We distinguish between sustained violations, which persist over
time, and severe violations, where latency exceeds SLO; by more than a given



threshold, as these indicate systemic performance degradation. To capture worst-case
load conditions, we monitor high-percentile CPU and memory usage values, namely
p95CPU - p9sMEM = 599CPU = 1,g9MEM - For proactive approaches such as PRIMAL,
we also measure the lead-time, defined as the average anticipation interval between
predicting an overload and its actual occurrence

K
LeadTime = % Z (tprcd,k - tcvcnt,k) )
k=1

where tpreq,r is the prediction time and tevent,r is the time at which overload
is observed. Larger lead-times give the system more opportunity to take preventive
actions, such as migrating tasks or adjusting quotas, before performance degrades.

Finally, we define a composite SLO score that aggregates throughput, rejections,
and violations into a single optimization objective

SLO_Score = « - Throughput — 3 - Rejections — - Violations,
where «, 8,7 are weights reflecting the deployment’s operational priorities. To
ensure commensurate scales, all three components are min—-max normalized per sce-
nario to [0, 1]. Unless noted, we use a=1.0, $=1.0, and y=1.0. The plotted composite
in Fig. 8 uses exactly these settings. The general optimization problem is thus

max SLO_Score
X(t)

subject to resource constraints and allocation feasibility. For proactive (Agentic
AT) methods like PRIMAL, we additionally aim to

maximize LeadTime s.t. Violations minimal,

ensuring that the system not only reacts to overloads but also anticipates and
mitigates them in advance.

The allocation problem is inherently dynamic and stochastic, with workloads
exhibiting non-stationary temporal patterns, heterogeneous node capacities, and
unpredictable demand bursts. The trade-offs between utilization, SLO compliance,
and fairness are further complicated by the need for rapid decision-making under
partial knowledge of the system state. These characteristics make the problem par-
ticularly well-suited for Agentic AI solutions that combine predictive modeling, such
as the LSTM-based PRIMAL, with adaptive threshold control to balance accuracy,
responsiveness, and efficiency in edge environments.

4 PRIMAL

We propose PRIMAL (Proactive Resource Intelligent Management with Agentic
Learning), an Agentic Al-based resource allocation framework specifically designed
for edge computing environments. PRIMAL integrates predictive modeling with adap-
tive decision-making to anticipate overloads and proactively reallocate tasks, thereby
improving Service Level Objective (SLO) compliance while maintaining high resource
utilization. Unlike conventional reactive approaches, which only act when thresholds



are breached, or simple predictive methods that rely on fixed models, PRIMAL com-
bines the accuracy of a pre-trained Long Short-Term Memory (LSTM) predictor with
adaptive threshold tuning. This combination enables fine-grained, anticipatory con-
trol over allocation decisions, making it capable of handling non-stationary workloads
while adapting in real time to evolving conditions.

Table 1 summarizes the symbols and variables used throughout the paper to
describe the PRIMAL framework, its predictive models, and evaluation metrics. This
notation serves as a reference to ensure clarity and consistency in the presentation of
algorithms, mathematical formulations, and performance results. By explicitly defining
each term, we facilitate reproducibility and allow readers to follow the methodological
details without ambiguity.

Table 1: Notation.

Symbol Meaning

u?PU/MEM (t) observed utilization at node ¢
ﬂiCPU/MEM (t+A)  predicted utilization (horizon A)
CSPU/MEM capacity of node 17

THREPY/MEM (1) adaptive threshold (EWMA + offset 6)
history window length for prediction
prediction horizon
EWMA responsiveness
safety margin offset

The system operates in discrete time steps ¢, processing incoming tasks 7; and
deciding their allocation x;;(t) to edge nodes e;. At each step, PRIMAL begins by
monitoring the current resource utilization uSTV () and uMFM (1), as well as the active
task set A;(t) on each node. These measurements are then fed into a pre-trained LSTM
model, which predicts the short-term future utilization 4TV (¢t +A) and aMEM(t+A),
capturing both seasonal patterns and bursty variations.

To maintain robustness under workload variability, PRIMAL employs a dynamic
threshold mechanism based on an exponentially weighted moving average (EWMA)
of recent utilizations:

THR,(t) = au;(t) + (1 — a) THR;(t — 1) + 4,

where « controls responsiveness to recent changes and § provides a safety margin.
This adaptive mechanism avoids both excessive conservatism and aggressive overcom-
mitment, allowing thresholds to self-adjust in response to long-term trends and sudden
demand changes.

When a new task 7; arrives, PRIMAL identifies candidate nodes for which the
predicted utilization after allocation remains below the threshold in both CPU and
memory dimensions:

d5TV +alPU(t + A) < THR;(¢),  d)"™ + a)™M(t + A) < THR;(t).



From this candidate set, the algorithm selects the node with the smallest predicted
impact on SLO performance, calculated as:

ﬁCPU ,LALMEM

Impact, = wy - — -t

bact; L' ooPU + w2 CMEN

where w; and wy are weights that reflect the relative importance of CPU and
memory headroom for the targeted workloads.

The complete procedure is summarized in Algorithm 1. It formalizes the integra-
tion of monitoring, prediction, threshold adaptation, candidate selection, and final
allocation, providing a clear operational blueprint for deployment.

Algorithm 1 PRIMAL Allocation Strategy
CCPU OMEM (

Require: £ (nodes), T (t) (incoming tasks) capacities), LSTM predic-
tor fg

: for each time step ¢t do

Monitor u$PY(¢), uMEM(¢) for all e; € £

Predict aSPV (¢ + A), aMEM(t + A) « fo(ui(t — H : 1))

Update thresholds THR;(t) < au;(¢) + (1 —a)THR;(t — 1) + ¢

for each task 7; € T(t) do
Identify candidates C satisfying resource constraints w.r.t. THR;(#)
Compute Impact; for each e; € C
Allocate to e} = arg min,, ¢ Impact;
Update A;-(t) accordingly

end for

11: end for

© ® NS w e
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We instantiate Impact,; as the predicted margin to thresholds, penalizing overload
risk and imbalance:

Impact,; (7,t) = Avisk - rnax(O7 Q?PU (t+A) + Augpu - THR?PU (t))
+ Arisk - max((), M (t4+A) + Augigy — THRFEY (ﬂ)
+ Apal - Skew; (t) (1)

where Au"/ is the task’s resource demand increment and Skew; discourages per-
sistent load skew across nodes. We use Ajsk=1 and Apa= [value] unless otherwise
noted.

By integrating accurate temporal load prediction with adaptive thresholds, PRI-
MAL is able to anticipate and avoid overloads before they occur, significantly reducing
rejection rates and sustained SLO violations. Its dynamic balancing of throughput
and compliance enables seamless adaptation to workload changes, while preemptive
allocation decisions improve both reliability and overall system efficiency.



5 Evaluation and Discussion

This section evaluates the proposed PRIMAL framework against four baseline
approaches: a purely reactive method (Reactive), a pre-trained LSTM-based pre-
dictor with fixed thresholds (Predictive), a pre-trained LSTM-based predictor with
adaptive thresholds (Predictive Adaptive), and an online-trained LSTM predictor
(Online LSTM). The key characteristics of each baseline are as follows.

Reactive: This method is based on the work by Ahmad et al. [16], and represents
the simplest and most direct resource allocation strategy. Decisions are made solely
based on the current system state, without any forecasting of future demand. Upon
receiving a new allocation request, the algorithm checks the currently available
resources and accepts or rejects the request accordingly. While computationally
lightweight and fast, this approach is prone to SLA violations in highly variable
workload scenarios, as it does not anticipate imminent overload periods.
Predictive: The predictive method is based on the method prposed by Park et
al. [17], and employs a pre-trained Long Short-Term Memory (LSTM) model to
forecast future CPU and memory utilization based on historical time series data.
At each decision point, the algorithm compares the predicted usage against the
node’s capacity. If the forecast indicates a potential risk of saturation, the request
is rejected; otherwise, it is accepted. This approach reduces overload occurrences
compared to the reactive method but relies on fixed thresholds, which may limit
adaptability under dynamic workload patterns.

Predictive Adaptive: This approach is based on the approach by Mongia et
al. [18], and also uses a pre-trained LSTM model for forecasting but integrates
a dynamic threshold adjustment mechanism. Instead of relying on static decision
boundaries, it periodically recalibrates thresholds based on recent system condi-
tions, such as rejection rates, proximity to saturation, and workload variability.
This enables the algorithm to better respond to abrupt changes in demand, balanc-
ing acceptance rate and SLA compliance more effectively. However, the continuous
monitoring and recalibration increase its computational complexity compared to
the static predictive approach.

Online LSTM: The online LSTM method is based on the work by Mirza et al. [19],
and maintains the forecasting structure but continuously updates the model weights
during execution, enabling adaptation to workload patterns not present in the ini-
tial training data. Incremental learning is performed using recent resource usage
measurements, allowing the model to adjust to long-term shifts or entirely new
workloads. While this can improve prediction accuracy in highly dynamic environ-
ments, it requires greater computational resources and may experience temporary
performance degradation during adaptation phases.

5.1 Dataset and Splitting Strategy

The experiments were conducted in a simulated heterogeneous edge environment under
non-stationary workloads. All results are obtained using a machine-level split of the
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original machine usage.csv dataset': the machines used for training PRIMAL are
entirely disjoint from those used for evaluation. This ensures that the reported perfor-
mance reflects PRIMAL’s ability to generalize across unseen machines with different
capacity profiles, while operating under the same overall workload distribution. This
dataset contains multi-dimensional resource utilization traces from heterogeneous edge
nodes of three capacity profiles (small, medium, and large). The dataset includes CPU,
memory, and other relevant performance indicators collected under realistic workload
conditions, and covers a range of load patterns, from steady to bursty. Each test trace
covers a continuous 24-hour period, ensuring that daily load variations and diurnal
patterns are captured during evaluation. The dataset spans a total of seven days. Of
this period, the 24 hours used for algorithm evaluation account for 14.29% of the data,
while the remaining 85.71% was employed for training the PRIMAL model.

To prevent any direct temporal or spatial overlap between training and testing,
we perform a machine-level split: the set of machines used for training is disjoint
from the set used for evaluation. For each capacity profile, we randomly select a
subset of machines for training PRIMAL, while the remaining machines are reserved
for evaluation. This ensures that the model is exposed to diverse workload patterns
during training while being evaluated exclusively on unseen nodes, thus assessing its
ability to generalize across machines with different capacity characteristics within the
same workload environment. Signals are clipped to [0, 150]% to handle spurious spikes,
then z-normalized using training statistics. We forward-fill at most one interval; longer
gaps are excluded from metric aggregates to avoid bias. All results are averaged over
N=[K] independent runs with different seeds. We report 95% confidence intervals via
non-parametric bootstrap (10,000 re-samples). Pairwise method comparisons use the
Wilcoxon signed-rank test with Holm-Bonferroni correction (a=0.05).

5.2 Experimental Setup

The heterogeneous edge environment is simulated with nodes of varying resource
capacities matching the three capacity profiles in the dataset. Baseline methods include
a purely reactive scheduler (Reactive), a threshold-based static predictor (Static Pre-
dictive), and an online-trained LSTM predictor (Online LSTM). All methods are
evaluated under the same workload arrival patterns and node configurations. Metrics
for comparison include throughput, task acceptance rate, rejection rate, SLO viola-
tions, tail latency (p95 and p99 CPU/memory utilization), lead-time before overload,
and a composite SLO score.

5.2.1 Throughput

Figure 2 shows that PRIMAL achieves the highest throughput across all workload
scenarios, with a modest yet consistent improvement of approximately 2-3% over the
second-best method. While the numerical gap may appear small, in high-throughput
edge environments this difference translates to thousands of additional tasks success-
fully completed within their deadlines. PRIMAL’s advantage stems from its integration

Yhttps://github.com/google/cluster-data
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of predictive allocation with adaptive thresholding, enabling the system to antici-
pate resource contention and avoid premature saturation. In contrast, the Reactive
approach only responds after overload events, limiting its ability to sustain high
throughput under fluctuating demand.
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Fig. 2: Throughput comparison among PRIMAL and baseline methods.

In scenarios with bursty and unpredictable load patterns, the Reactive method suf-
fers substantial drops in throughput because the delay in response causes task queues
to grow rapidly, leading to missed scheduling opportunities and increased task expira-
tion. Another important observation is that the performance gap between PRIMAL
and the other predictive approaches becomes more pronounced under high variability
in inter-arrival times. This indicates that the adaptability of PRIMAL is particularly
beneficial in environments where workload volatility challenges the stability of static
or purely predictive strategies. While simpler methods may achieve competitive results
under steady-state conditions, they lack the dynamic resilience that PRIMAL demon-
strates when faced with sudden demand spikes, making it not only more efficient in
terms of raw throughput but also more robust in maintaining service quality over
extended periods of operation.

5.2.2 Task Acceptance Rate

The task acceptance rate results in Figure 3 further reinforce PRIMAL’s competitive
advantage, showing improvements of up to 12% over the best-performing baseline.
This performance gap is particularly pronounced during sustained high-load intervals,
where the system’s ability to proactively mitigate overload plays a decisive role in
preserving capacity for incoming high-priority tasks. By leveraging predictive forecast-
ing to anticipate demand surges and dynamically adjusting admission thresholds in
real time, PRIMAL avoids both unnecessary early rejections and the risk of resource
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exhaustion, striking an effective balance between utilization and reliability. In con-
trast, static predictive methods, although outperforming purely reactive allocation,
are fundamentally constrained by their reliance on fixed thresholds.
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Fig. 3: Task acceptance rate across different methods.

When thresholds are set too low, these methods adopt an overly conservative
stance, rejecting a significant number of tasks that could have been processed with-
out jeopardizing service guarantees, which results in underutilization of available
resources. Conversely, when thresholds are set too high, they tend to oversubscribe
resources, leading to frequent SLO violations during sudden bursts of demand. This
inability to adapt to workload variability causes static predictive methods to oscillate
between inefficiency and unreliability, undermining their overall effectiveness. PRI-
MAL’s advantage, therefore, lies not only in its superior average acceptance rate but
also in its stability across a broad range of operational conditions, maintaining a consis-
tently higher capacity to serve critical workloads even under adverse traffic dynamics.
This resilience is a key differentiator, particularly in edge environments where load
unpredictability is the norm and efficient prioritization of tasks directly impacts service
continuity.

5.2.3 Rejection Rate

As depicted in Figure 4, PRIMAL achieves a substantial reduction in rejection rate,
lowering it by approximately 15-20% compared to the best-performing baseline. This
improvement stems directly from its adaptive capacity planning mechanism, which
integrates short-term workload forecasting with dynamic adjustment of acceptance
thresholds. By accurately predicting near-future utilization patterns, PRIMAL is able
to distinguish between transient load fluctuations and sustained demand increases,
allowing it to accept tasks that can be feasibly completed without jeopardizing system
stability while preemptively rejecting those that would cause overloads in the near
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term. This capability not only minimizes unnecessary rejections of viable tasks but
also prevents cascading performance degradation resulting from resource contention.
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Fig. 4: Rejection rate under varying workload conditions.

In contrast, reactive methods inherently suffer from late decision-making, as they
respond only after critical thresholds have already been breached. This delay often
triggers abrupt bursts of task rejections during overload peaks, which not only impacts
throughput but can also disrupt service quality for high-priority workloads. Further-
more, when analyzing rejection patterns over time, PRIMAL shows a more uniform
and predictable rejection behavior, avoiding the large oscillations typical of static
and reactive approaches. This stability is crucial in multi-tenant and latency-sensitive
environments, where sudden surges in rejections can lead to service-level violations,
degraded user experience, and reduced trust in the system. The fact that PRIMAL con-
sistently maintains lower rejection rates across varying workload intensities highlights
its ability to balance efficiency and robustness, ensuring that resources are allocated
to maximize service continuity without sacrificing performance under unpredictable
demand conditions.

5.2.4 SLO Violations

Figure 5 illustrates that PRIMAL achieves the lowest overall number of SLO viola-
tions across all evaluated scenarios, but presents a different behavior when focusing
on sustained violations. In this specific metric, PRIMAL records approximately 2.8
times more sustained violations than the online-trained LSTM and nearly 70 times
more than the Reactive baseline. This outcome is a direct result of PRIMAL’s more
aggressive admission policy, which is designed to prioritize maximizing throughput
and task acceptance, even under conditions approaching resource saturation. While
its predictive and adaptive mechanisms effectively anticipate workload surges and
delay the onset of overload, the strategy tends to admit additional tasks during high-
utilization periods. As a consequence, once saturation is reached, violations may occur
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in consecutive intervals, leading to higher sustained violation counts. In contrast, more
conservative baselines, particularly those with static or reactive control, adopt tighter
thresholds that reduce throughput but limit the duration of violation streaks. This
contrast highlights a fundamental performance-reliability trade-off: PRIMAL delivers
superior overall efficiency and acceptance rates, but at the cost of tolerating longer
sequences of missed deadlines when overload is unavoidable.
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Fig. 5: Number of SLO violations across methods.

The effects of this proactive stance are most visible during sudden workload tran-
sitions, where static and reactive methods struggle to maintain throughput. Although
the online-trained LSTM offers some adaptability in dynamic environments, it is inher-
ently limited by its need for continuous retraining and incremental convergence, which
can lead to temporary mispredictions and suboptimal decisions during rapid work-
load shifts. PRIMAL’s reliance on a robust pre-trained forecasting model, combined
with adaptive threshold tuning, allows it to react almost instantly to changes in work-
load characteristics without the instability associated with ongoing model updates.
However, this aggressive approach favors maintaining high task acceptance rates over
strictly minimizing sustained SLO violations, resulting in a higher absolute number of
prolonged deadline misses. In latency-sensitive edge computing scenarios, this trade-
off may be acceptable when maximizing overall throughput is prioritized, but it comes
at the cost of increased clustering of violations under sustained overload conditions.

5.2.5 Tail Latency

The tail-latency analysis in Figure 6 reveals that PRIMAL consistently maintains lower
high-percentile utilization levels for both CPU and memory compared to all evaluated
baselines, demonstrating its ability to effectively control resource pressure under chal-
lenging conditions. At the 95th percentile (Fig. 6a), the reductions in utilization are
substantial and stable across scenarios, indicating that PRIMAL significantly limits
the occurrence of near-saturation intervals during steady operation. This implies that,
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even under sustained high load, the system preserves operational headroom, allow-
ing it to absorb transient spikes without immediately entering a critical state. Such
behavior is essential in multi-tenant edge environments, where localized saturation
can quickly affect co-located services and degrade global performance.
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(a) p95 CPU and memory utilization.
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(b) p99 CPU and memory utilization.

Fig. 6: High-percentile (p95 and p99) CPU and memory utilization across methods.

When analyzing the 99th percentile results (Fig. 6b), PRIMAL’s benefits become
even more evident. The system not only reduces the magnitude of extreme utilization
peaks but also limits their frequency, effectively dampening the most severe load spikes
that are often responsible for triggering cascading violations in bursty workloads.
By anticipating these extreme conditions and adjusting scheduling and acceptance
thresholds proactively, PRIMAL prevents overload propagation across interconnected
edge nodes, thereby reducing the risk of system-wide instability. In contrast, static
and reactive methods tend to allow these peaks to fully develop before responding,
which often leads to abrupt contention, SLO breaches, and a chain reaction of missed
deadlines. This ability to maintain lower worst-case resource usage underscores PRI-
MAL’s robustness in balancing performance and stability, ensuring that throughput
and acceptance gains do not come at the expense of reliability. Ultimately, these
results highlight that PRIMAL’s advantage is not limited to average-case efficiency
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but extends to safeguarding the system against the rare yet highly detrimental events
that most strongly impact quality of service and operational resilience.

5.2.6 Lead-Time

As seen in Figure 7, PRIMAL attains the highest average lead-time among all
evaluated strategies, consistently exceeding 3 seconds, while the baselines remain con-
strained between 1 and 2 seconds. This additional temporal margin is particularly
valuable in latency-sensitive and mission-critical applications, as it provides a wider
operational window for executing proactive measures such as task migration, selec-
tive load shedding, or reallocation of resources to mitigate imminent bottlenecks. In
edge computing environments, where network and processing delays can compound
the effects of resource contention, even an extra second of lead-time can mean the
difference between maintaining SLO compliance and triggering a cascade of deadline
violations. The superior performance of PRIMAL in this metric stems directly from
the synergy between its accurate LSTM-based workload forecasts and the adaptive
adjustment of resource acceptance thresholds, which work together to anticipate future
utilization spikes before they reach critical levels.
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Fig. 7: Average lead-time before overload events.

Unlike static predictive approaches, which may occasionally forecast workload
trends correctly but lack the flexibility to adjust operational parameters on the fly,
PRIMAL leverages its forecasts to make immediate and context-aware adjustments,
translating predictive accuracy into tangible operational advantages. Similarly, while
reactive methods can respond to overload after it occurs, they inherently provide lit-
tle to no lead-time, leaving insufficient margin for complex mitigation actions that
require coordination across multiple nodes. By contrast, PRIMAL’s consistent ability
to sustain higher lead-time values ensures that mitigation strategies can be executed
in a controlled, orderly fashion, rather than under the urgency of imminent overload.
This capability is instrumental in preventing abrupt service degradation, optimizing

17



resource redistribution, and maintaining stability across heterogeneous and distributed
edge infrastructures, ultimately reinforcing PRIMAL’s positioning as a proactive,
resilient, and performance-oriented allocation strategy.

5.2.7 SLO Score

The composite SLO score in Figure 8 provides a holistic view of system performance
by integrating results from multiple key metrics, including throughput, rejection rate,
and SLO compliance. PRIMAL clearly outperforms all baselines, achieving margins
of improvement between 10-15%, which is particularly noteworthy given the inherent
trade-offs that often arise between these performance dimensions. This result confirms
that PRIMAL’s design does not rely on optimizing a single aspect at the expense of
others; instead, it delivers balanced and concurrent gains across multiple operational
objectives. In practical terms, this means that the increases in throughput and task
acceptance rate observed in earlier analyses are not achieved by allowing higher rejec-
tion rates or tolerating more frequent SLO violations. Rather, PRIMAL’s predictive
and adaptive mechanisms work in concert to improve efficiency while preserving ser-
vice reliability, demonstrating a rare alignment between high resource utilization and
strong quality-of-service guarantees.
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Fig. 8: Composite SLO score across methods.

The stability of PRIMAL’s composite score across different workload intensi-
ties further underscores its robustness. In many competing strategies, performance
improvements in one metric often come at the cost of degrading others — for instance,
static predictive methods may reduce rejection rates but incur higher violation counts,
while reactive methods might maintain compliance under light load but fail under sud-
den bursts. PRIMAL avoids these pitfalls through a feedback loop that continuously
aligns admission control and resource planning with forecasted conditions, ensuring
that no single metric drifts out of acceptable bounds. This capability is particularly
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relevant in heterogeneous and volatile edge computing environments, where maintain-
ing a consistent quality of service requires not only localized optimizations but also
global balance across competing performance priorities. The composite SLO score thus
serves as compelling evidence of PRIMAL’s capacity to harmonize multiple objectives,
positioning it as a comprehensive solution rather than a narrowly specialized policy.

5.3 Discussion

The collective results, obtained using a training set composed of machines entirely
disjoint from those in the evaluation set, provide strong evidence that PRIMAL’s
predictive allocation strategy yields substantial and consistent improvements in both
the efficiency and reliability of edge resource management. This separation between
training and evaluation environments ensures that the observed performance gains are
not merely the result of overfitting to specific workload patterns or resource profiles,
but rather reflect PRIMAL’s genuine capacity to generalize to unseen operational
scenarios. By accurately forecasting impending overloads and dynamically adapting
acceptance thresholds in real time, PRIMAL not only increases the proportion of tasks
accepted and completed within their deadlines but also achieves this without incurring
excessive SLO violations, thereby striking a balance between resource utilization and
service quality that is difficult to maintain with traditional strategies.

The advantages are particularly pronounced under bursty and non-stationary
workloads, where workload volatility challenges the assumptions and static con-
figurations of conventional allocation methods. In such conditions, purely reactive
approaches tend to fall behind due to delayed responses that result in abrupt rejec-
tions and performance degradation, while static predictive methods are hindered by
their inability to adapt thresholds to fluctuating demand, oscillating between under-
utilization and overload. PRIMAL’s integration of Agentic Al principles with a robust
pre-trained LSTM forecasting model and adaptive control mechanisms allows it to
anticipate these variations and adjust proactively, maintaining performance stability
even in highly dynamic environments. This synergy between predictive modeling and
adaptive decision-making not only enhances immediate operational outcomes but also
points toward a scalable, future-ready paradigm for edge computing resource allo-
cation. The findings strongly suggest that further exploration of hybrid approaches
combining intelligent forecasting with agent-driven control could unlock even greater
resilience and efficiency, paving the way for resource management systems that are
both autonomously adaptive and robust against the unpredictability inherent to
real-world edge workloads.

6 Related Work

Proactive resource allocation at the edge has been addressed through statistical fore-
casting, deep sequence modeling, and learning-based control. Table 2 summarizes ten
representative studies, detailing their core contributions, methodologies, datasets, and
limitations, and positions our agentic LSTM-based PRIMAL framework within this
landscape.
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Nguyen et al. [20] present a multivariate, location-aware LSTM model that explic-
itly incorporates spatial correlations among neighboring Edge Data Centers (EDCs)
to improve workload forecasting accuracy. Using mobility traces from Rome and San
Francisco, their predictor reduces normalized RMSE by up to 44% over location-
unaware baselines and 17% over a prior location-aware VAR model, evidencing the
value of spatio-temporal learning. However, the approach remains focused on forecast-
ing accuracy, and it does not integrate these predictions into an online admission or
placement policy, leaving the potential for real-time SLO violation prevention unex-
plored. Similarly, Garg et al. [21] combine Gaussian Mixture Models (GMM) with
per-cluster LSTM predictors to forecast utilization in Google Cluster v2 traces, out-
performing LR, MA, and ARIMA baselines in RMSE and stability. While effective
for cloud-scale server consolidation and energy reduction, their method is cloud-
centric and lacks adaptation to the heterogeneous, latency-constrained nature of edge
environments.

Mali et al. [22] integrate a BILSTM-GRU sequence model with a federated deep
reinforcement learning (FL-D4PG) controller to manage IoT edge offloading. Their
forecasting module predicts arrival rates and resource usage, and the RL component
optimizes offloading under energy and latency constraints, achieving better task com-
pletion rates than heuristic baselines. While realistic in preserving data locality, this
approach emphasizes policy learning over pretrained forecasting and omits adaptive
thresholding safeguards for bursty workloads. Lajili et al. [23] take a different path,
proposing PSTS, which combines traditional time-series forecasting with clustering
and an enhanced Gravitational Search Algorithm (GSA) for stream-based scheduling
across the edge—cloud continuum. Their method outperforms RAND, standard GSA,
and GA in terms of fitness and throughput; however it does not utilize deep sequence
models for temporal pattern learning and lacks mechanisms to prevent saturation.

Xu et al. [24] provide a broad survey of edge allocation and scheduling strategies,
mapping the challenges of heterogeneity, dynamic topologies, and edge—cloud coordi-
nation. Although valuable for contextualizing our research, the survey is descriptive
and does not propose a concrete integration of short-horizon sequence predictors with
online decision-making. In contrast, Zhang et al. [25] combine BILSTM and GridLSTM
architectures with Savitzky—Golay smoothing for data center resource forecasting,
showing RMSLE gains over ARIMA, SVM, and standalone LSTM baselines. Yet,
their framework is purely predictive and lacks the operational actuation we target in
PRIMAL.

Recent work by Tripathi et al. [26] presents a multilayer multivariate neural
network for resource utilization forecasting across workloads, outperforming prior
state-of-the-art in Alibaba and Google trace benchmarks. While accurate, the design
is general-purpose and not tailored for the specific volatility of edge environments, nor
is it paired with an agentic control mechanism to act preemptively. Wiley et al. [27]
instead frame resource allocation in mobile/edge settings as a performance-aware deep
RL problem, optimizing long-term energy—performance trade-offs. Although RL han-
dles complex decision spaces, the absence of explicit short-horizon sequence forecasting
reduces its ability to anticipate overloads. Similarly, the LSTM-based load balancing
in energy-harvesting MEC systems proposed by Dlamini et al. [28] focuses on joint
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communication—computation allocation for throughput and energy harvesting, but its
scope is specialized and not designed for generalized CPU-memory admission control.

Ahmad et al. [16] proposed Smart Horizontal Pod Autoscaler (Smart HPA,
reactive) and ProSmart HPA (proactive) as resource allocation mechanisms for
microservice-based systems. Smart HPA facilitates resource exchange to mitigate
misallocation under constrained deployments, whereas ProSmart HPA employs a
machine-learning-based scaling policy to anticipate pod startup and termination
delays, thereby reducing both over- and under-provisioning. Experimental results indi-
cate that both approaches outperform Kubernetes HPA; however, ProSmart HPA does
not consider the heterogeneity of constrained edge devices and has not been empirically
validated in edge environments. Park et al. [17] presented an LSTM-based prediction
method combined with minimum-cost maximum-flow optimization for resource allo-
cation in business process monitoring. Although effective for offline scheduling, their
approach does not account for real-time edge computing constraints such as device
heterogeneity, network volatility, and latency-sensitive tasks. In contrast, our frame-
work extends this line of work to edge environments by incorporating online LSTM
adaptation with decentralized min-cost flow scheduling, thereby enhancing scalability
and responsiveness under dynamic edge conditions.

Mongia et al. [18] proposed an adaptive threshold policy based on the robust
Q,, estimator for energy-efficient virtual machine consolidation in cloud data centers.
Their method dynamically calculates CPU utilization thresholds from historical data
to reduce energy consumption and SLA violations during VM migration. While effec-
tive in cloud environments, the approach is fundamentally reactive, adjusting to past
trends rather than anticipating future load. Furthermore, it is designed for the homo-
geneous and resource-rich context of cloud data centers. It does not address the unique
challenges of latency, heterogeneity, and the distributed nature inherent to edge com-
puting infrastructures. Mirza et al. [19] propose Co-LSTM and Co-GRU, extensions of
LSTM and GRU networks that embed weighted input and output covariance matrices
into their gating mechanisms to capture temporal dependencies better. They further
employ Weight Matrix Factorization (WMF) to reduce parameterization and com-
putational overhead. While their models demonstrate improved performance across
regression, classification, and natural language processing tasks such as sentiment anal-
ysis and image captioning, the approach remains generic and is not tailored to edge
computing. It lacks integration with resource allocation or orchestration frameworks,
does not address real-time constraints or device heterogeneity, and relies on centralized
online learning without support for proactive or predictive scaling based on workload
forecasts. Wu et al. [29] propose EdgeLSTM, a system using a Grid LSTM model com-
bined with a multiclass SVM for analyzing IoT time-series data at the edge. Their work
focuses on data-centric tasks including prediction, anomaly detection, and classifica-
tion within IoT applications. While it effectively handles multidimensional temporal
dependencies, its scope is limited to data analytics and does not address resource man-
agement. The framework lacks integration with dynamic allocation policies, adaptive
thresholding for saturation prevention, and proactive orchestration mechanisms for
QoS-aware scheduling in multi-tenant edge nodes.
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Table 2: Comparison with representative works. “Actuation” indicates whether the
forecast is coupled to an online admission/placement policy evaluated under edge
constraints.

Work Edge focus Forecast model Real traces Proactive Actuation Safeguards
Nguyen et al. MEC LSTM Mobility traces v X -
(CCGrid’19) [20] (multivariate,
spatial)
Garg et al. Cloud GMM+LSTM Google v2 v X
(Cluster
Comp.’23) [21]
Mali et al. Edge/IoT BiLSTM-GRU + Google traces v v RL policies
(Sensors’25) [22] FL-D4PG (sim)
Lajili et al. Edge—Cloud Time-series + GSA Synthetic v v Heuristics
(LNAT25) [23]
Xu et al. Edge survey — - - - -
(CCISs’24) [24]
Zhang et al. Cloud BiLSTM+GridLSTM Google v X S-G
(BG-LSTM) [25] smoothing
Multilayer MV Cloud/Edge Multilayer Alibaba, Google v X
forecast (2025) [26] multivariate
Perf-aware DRL Edge/Mobile DRL Emulated v v RL
(2020) [27] constraints
LSTM load MEC LSTM Simulated v v Energy
balancing MEC constraints
(2020) [28]
Edge predictive Edge Predictive (stat.) Case-based v v Simple
util. (2024) [30] margins
Ahmed et al. [16] Edge + PROPHET Online Boutique v v Resource
Cloud exchange
policy
Park et al. [17] General - LSTM BPIC’12 v X Optimization
BPM constraint
Mongia et al. [18] Cloud Historical Data Planet Lab v v Adaptive
Analysis threshold
Mirza et al. [19] General LSTM + GRU Kinematics, X X -
Elevators, Protein
Tertiary,
Puma8NH
Wu et al. [29] Edge/IoT Grid LSTM Sensor Data X X Multiclass
SVM
Our work Edge nodes PRIMAL Real-derived v v k-of-n,
(Pretrained edge traces anti-
LSTM) overshoot,
quan-

tile+ EWMA,
hysteresis,
cooldown

Finally, an edge-focused study [30] proposes a predictive allocation mechanism
based on current utilization and workload signatures, yielding measurable gains in
stability and utilization. Nevertheless, the predictor is simpler than modern LSTM
models and lacks advanced safeguards such as anti-overshoot control, hysteresis, and
cooldowns, which are critical under volatile loads. As summarized in Table 2, existing
works demonstrate that LSTM and deep predictors improve forecast accuracy, while
RL and heuristic methods can enhance allocation optimality. Our PRIMAL frame-
work closes the loop by embedding a pretrained LSTM within an agentic, proactive
admission controller that (i) performs short-horizon CPU and memory forecasting
per node, (ii) acts with lead-time using k-of-n exceedance checks and adaptive safety
margins, (iii) enforces anti-overshoot control with quantile-EWMA targets, hysteresis,
and cooldown, and (iv) achieves measurable end-to-end improvements in throughput,
acceptance rate, and SLO compliance on edge traces derived from real workloads.
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7 Conclusions and Future Work

This work introduced PRIMAL (Proactive Resource Intelligent Management with
Agentic Learning), an agentic Al-based framework for dynamic resource allocation in
edge computing environments. By embedding a pre-trained Long Short-Term Memory
(LSTM) forecasting model within an adaptive decision-making loop, PRIMAL antici-
pates resource saturation several time steps ahead and proactively redirects workloads
to maintain high Service Level Objective (SLO) compliance. Unlike traditional reac-
tive or fixed-threshold approaches, the proposed method fuses predictive intelligence
with dynamic thresholds, enabling fine-grained, context-aware allocation decisions that
respond to workload volatility.

The evaluation leveraged realistic workload traces derived from real machine usage
datasets, transformed into heterogeneous edge node scenarios (small, medium, and
large capacity profiles). Five allocation strategies were compared: reactive, predictive,
adaptive predictive, online-trained LSTM, and PRIMAL (pre-trained LSTM). Per-
formance was assessed across multiple dimensions, including throughput, acceptance
rate, rejection rate, sustained violation count, CPU and memory utilization percentiles
(pos, Pog, and maximum), lead-time anticipation, and an aggregated SLO score.

Results demonstrated that PRIMAL achieved up to 12% higher task acceptance
rates compared to reactive baselines, while sustaining competitive throughput and sig-
nificantly reducing overload-induced task rejections. The pre-trained LSTM predictor
consistently provided early warning signals, allowing allocation decisions to be taken
before hard capacity limits were reached. This predictive lead-time was especially
beneficial under bursty and periodic load patterns, where purely reactive strategies
suffered from cascading SLO violations and resource thrashing. Moreover, the frame-
work maintained high utilization efficiency without excessive overcommitment, thanks
to the adaptive EWMA-based thresholding mechanism.

Nonetheless, some limitations remain. The current implementation operates on
pre-processed traces with fixed temporal granularity, which may not fully capture
real-world variability, noise, and asynchronous task arrivals. The pre-trained LSTM,
while accurate within its training domain, is susceptible to performance degradation
under workload shifts that deviate significantly from historical patterns, necessitating
periodic retraining or online fine-tuning.

Future research should focus on relaxing the reliance on pre-processed traces by
integrating the framework with live monitoring systems capable of ingesting raw,
high-frequency telemetry data. This would enable evaluation under conditions that
better reflect real-world variability, including noise, irregular sampling intervals, and
asynchronous task arrivals. Another promising direction is the adoption of adap-
tive temporal granularity, where the system dynamically adjusts its observation and
decision windows according to workload volatility.
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